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Computing Boolean Functions

Computing (or representing) a Boolean function

f(x1, x2, x3) : {0, 1}3 → {0, 1}

g1 = x1 ⊕ x2
g2 = x2 ∧ x3
g3 = g1 ∨ g2
g4 = g2 ∨ 1
g5 = g3 ≡ g4

x1 x2 x3 1

⊕g1 ∧ g2

∨g3 ∨ g4

≡g5
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Fundamental Question

Given a Boolean function
f : {0, 1}n → {0, 1}, what is the minimum
number of gates needed to compute f?

Does there exist an infinite sequence of
functions f1, f2, . . . such that fn has n
inputs,

∪∞
i=1 f−1(1) ∈ NP, and fn requires

superpoly(n) gates? (This would mean
that P ̸= NP.)
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Exponential Bounds

Lower Bound
Counting shows that almost all functions of n
variables have circuit size Ω(2n/n) [Shannon
1949].

Upper Bound
Any function can be computed by circuits of
size (1+ o(1))2n/n [Lupanov 1958].
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Outline

Upper Bounds: known upper bounds for some
basic functions, using SAT-solvers for
circuit synthesis.

Lower Bounds: overview of known lower
bounds and approaches for proving
them.
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1. Upper Bounds



Computing the Sum Function

Let SUMn be a Boolean function with n inputs
and ⌈log2(n+ 1)⌉ outputs that computes the
binary representation of the sum of n input bits

Computing SUM3(x1, x2, x3):

x4 = x2 ⊕ x3
x5 = x1 ⊕ x4
x6 = x2 ∧ x3
x7 = x1 ∧ x4
x8 = x6 ∨ x7

x1

x2 x3

⊕x4

⊕x5

∧ x6

∧ x7
∨ x8
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Is There a Smaller Circuit?

• It can be verified using SAT-solvers that
there is no smaller circuit

• Roughly, one translates a statement “there
exists a circuit with four gates computing
a function with the given truth table” to
CNF-SAT and then uses SAT-solvers to show
that the resulting formula is unsatisfiable
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State of the Art

• Modern SAT-solvers are able to find circuits
of size around 10–12

• Proving that there is no circuit of size 12 is
already a difficult task to the
state-of-the-art SAT-solvers

• Implementations:
• github.com/alexanderskulikov/
circuit-synthesis

• www-cs-faculty.stanford.edu/
~knuth/programs.html
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Why should we care about n ≤ 7?

Practice: We are interested in much larger
values of n — say, n = 1024 (also, in
practice, we should take into account
other parameters of a circuit like its
depth, area, etc)

Theory: We are interested in upper bounds
w.r.t. all n rather than some n = O(1)
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First Reason: Guaranteed Improvement

For some families of functions {fn}∞n=0, proving
an upper bound on gates(fn) for n = O(1)
automatically translates into an upper bound
on gates(fn) for all n

This is usually because a circuit for fn can be
constructed naturally from constant size blocks
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Examples

gates(SUM3) ≤ 5⇒ gates(SUMn) ≤ 5n

gates(SUM7) ≤ 19⇒ gates(SUMn) ≤ 4.75n

Record: gates(SUMn) ≤ 4.5n
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Second Reason: Potential Improvement

For some families of functions {fn}∞n=0, knowing
good upper bounds on gates(fn) for small
values of n may help us to improve known
upper bounds for all n
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Encyclopedia of Minimum Circuits

“Our knowledge of Boolean circuit
complexity is quite poor. […] One good
reason why we don’t know much about
the true power of circuits is that we
don’t have many examples of minimum
circuits. We don’t know, for example,
what an optimal circuit for 3× 3 Boolean

matrix multiplication looks like. It is possible that we
could make progress in understanding circuits by
cataloging the smallest circuits we know for basic
functions, on small input sizes (such as n = 1, . . . , 10).”

Ryan Williams, Applying Practice to Theory
13



Small Circuits

“Some of them are astonishingly beautiful; some of them
are beautifully simple; and others are simply
astonishing.”

Donald E. Knuth
The Art of Computer Programming, Volume 4 14



Open Problems

• The state-of-the-art SAT-solvers are not
able to answer the following questions.
Can other solvers help?

• gates([x1 + · · ·+ x6 ≡ 1 mod 3]) < 13?
• gates(SUM7) ≤ 17? gates(SUM15) ≤ 49?

• Other approaches? E.g., local search, ILP,
branch-and-bound, gradient descent

15



Open Problems

• The state-of-the-art SAT-solvers are not
able to answer the following questions.
Can other solvers help?

• gates([x1 + · · ·+ x6 ≡ 1 mod 3]) < 13?
• gates(SUM7) ≤ 17? gates(SUM15) ≤ 49?

• Other approaches? E.g., local search, ILP,
branch-and-bound, gradient descent

15



2. Lower Bounds



Explicit Lower Bounds

The lower bound Ω(2n/n) by Shannon is
non-constructive: it does not give an explicit
function (i.e., a function from NP) with
superpolynomial circuit size.

What can we prove for explicit functions? What
about restricted circuit classes?
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Restricted classes: constant depth circuits

⊕

∧

∨

x̄4x5x̄7

∨

x3x2x1

∧

∨

x̄4x̄2x̄6

∨

x2x̄7x6

∧

∨

x1x2x3

∨

x̄5x2x̄3

• depth: constant, fan-in: unbounded
• exponential lower bounds: switching
lemma [A83, FSS84, Y85, H86, R95],
approximating polynomials [RS87]
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Restricted classes: monotone circuits

• fanin: 2
fanout: unbounded
operations: {∧,∨}

• exponential lower
bounds: method of
approximations
[R85, A85, AB87]

x1 x2 x3 x4

∨ ∧

∨ ∨

∧

∨
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Restricted classes: formulas

• fanin: 2, fanout: 1
• n2, n3 lower bounds:
random restrictions,
universal functions,
formal complexity
measures [S61, N66,
K71, A85, IN93, PZ93,
H98]

x1 x2 x3 x4

⊕ ∧

∨
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Explicit Lower Bounds

Restricted classes

lower bounds:
n3, 2n1/8 , 2n−o(n)

many beautiful
techniques are known
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Explicit Lower Bounds

Restricted classes General circuits

lower bounds:
n3, 2n1/8 , 2n−o(n)

lower bounds:
2n, 2.5n, 3n

many beautiful
techniques are known

just one simple
technique is known
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Explicit Lower Bounds for General Circuits
Previous
2n f(x) =

⊕
i<j xixj [KM 1965]

2n f(x) = [
∑
xi ≥ 2] [S 1974]

2.5n f(x,a,b) = xa ⊕ xb [P 1977]
2.5n symmetric [S 1977]
3n f(x,a,b, c) = xaxb ⊕ xc [B 1984]
3n affine dispersers [DK 2011]

New
(3+ 1/86)n affine dispersers [FGHK 2015]
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Explicit Lower Bounds: Pictorially

1965 1975 1985 1995 2005 2015

n

2n

3n
KM
65

S7
4

S7
7,
P7
7

B8
4

DK
11

FG
HK
15
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Quote

“This may seem quite
depressing. It is.”

Saxena, Seshadhri, 2010. From
Sylvester–Gallai Configurations
to Rank Bounds: Improved
Blackbox Identity Test for Depth-
3 Circuits

24



Gate Elimination Method

To prove, say, a 3n lower bound for all functions
f from a certain class F :

• show that for any circuit computing f, one
can find a substitution eliminating at least
3 gates

• show that the resulting subfunction still
belongs to F

• proceed by induction
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Gate Elimination: Example

x1 x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

⊕G5

⊕G6
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Gate Elimination: Example

x1 x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

⊕G5

⊕G6

assign x1 = 1
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Gate Elimination: Example

x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

⊕G5

⊕G6

1

G5 now computes G3 ⊕ 1 = ¬G3
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Gate Elimination: Example

x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

⊕G6

¬
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Gate Elimination: Example

x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

⊕G6

¬

now we can change the binary function assigned to G6
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Gate Elimination: Example

x2 x3 x4

⊕G1 ∧G2

∨G3 ⊕G4

≡G6

now assign x3 = 0
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Gate Elimination: Example

x2 x4

⊕G1 ∧G2

∨G3 ⊕G4

≡G6

0

G1 then is equal to x2
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Gate Elimination: Example
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0
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Gate Elimination: Example

x2 x4

∧G2

∨G3 ⊕G4

≡G6

0

G2 = 0
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Gate Elimination: Example

x2 x4

0G2

∨G3 ⊕G4

≡G6
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Gate Elimination: Example

x2 x4

⊕G4

≡G6
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Affine Dispersers

• A function f : {0, 1}n → {0, 1} is called an
affine disperser for dimension d if it is
non-constant on any affine subspace of
dimension at least d.

• An affine dispereser for dimension d
cannot become constant after any n− d
affine restrictions (i.e., restrictions of the
form x2 ⊕ x3 ⊕ x9 = 0).

• There exist explicit constructions of affine
dispersers for subliner dimension d = o(n)
(e.g., [Ben-Sasson, Kopparty, 2012]).
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Lower Bound
Theorem (DK11)
If f : {0, 1}n → {0, 1} is an affine disperser for
dimension d = o(n), then

gates(f) ≥ 3n− o(n).

Proof Idea
Make n− o(n) substitutions each time
eliminating at least three gates.

28



XOR-layered Circuits
t x y z

∨ ⊕ ∧

⊕ ⊕

∨

≡
inputs(C) = 4
gates(C) = 7

t x

x⊕ y

x⊕ y⊕ z

y z

∨ ∧

⊕

∨

≡
inputs(C′) = 6
gates(C′) = 5

inputs(C) + gates(C) ≥ inputs(C′) + gates(C′).
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3n− o(n) Lower Bound

Lemma
For a circuit C computing an affine disperser
for dimension d:

inputs(C) + gates(C) ≥ 4(n− d) .

Corollary
gates(f) ≥ 3n− o(n) for an affine disperser f
for d = o(n).
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• Want to show:
inputs(C) + gates(C) ≥ 4(n− d).

• Make n− d affine substitutions each time
reducing (inputs+ gates) by at least 4.

• Convert C to XOR-layered and take a
top-gate A:

Case 1

L1 L2

∧A
L1 ← 0:
∆gates = 2
∆ inputs = 2

Case 2

L1 L2

∧A
L1 ← 0:
∆gates = 3
∆ inputs = 1
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3. Open Problems



New Methods

• It is very unlikely that the gate elimination
method will lead to non-linear or, say, 10n
lower bounds: it tries to argue about a
circuit by looking at its top part.

• “Global” properties of circuits?
• Mass production effect?
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Affine Dispersers

Do there exist affine dispersers of linear circuit
size?

2n f(x) =
⊕

i<j xixj [KM 1965]
2n f(x) = [

∑
xi ≥ 2] [S 1974]

2.5n f(x,a,b) = xa ⊕ xb [P 1977]
2.5n symmetric [S 1977]
3n f(x,a,b, c) = xaxb ⊕ xc [B 1984]
3n affine dispersers [DK 2011]
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Affine Dispersers

Do there exist affine dispersers of linear circuit
size?

2n f(x) =
⊕

i<j xixj 2.5n
2n f(x) = [

∑
xi ≥ 2] 2.5n

2.5n f(x,a,b) = xa ⊕ xb 4n
2.5n symmetric 2.5n
3n f(x,a,b, c) = xaxb ⊕ xc 6n
3n affine dispersers O(n3)
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Annoying Gaps for Symmetric Functions

• 2.5n ≤ C(x1 + x2 + · · ·+ xn) ≤ 4.5n
• 2n ≤ C(AND,OR, XOR) ≤ 2.5n
• 2.5n ≤ C(x1 + x2 + · · ·+ xn ≡3 0) ≤ 3n
• 2n ≤ C(x1 + x2 + · · ·+ xn ≥ 3) ≤ 3n
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Summary of Open Problems

• New approaches (heuristics) for circuit
synthesis

• New approaches for circuit lower bounds
• Affine dispersers of linear circuit size?
• Annoying gaps:

• 2.5n ≤ C(x1 + x2 + · · ·+ xn) ≤ 4.5n
• 2n ≤ C(AND,OR, XOR) ≤ 2.5n
• 2.5n ≤ C(x1 + x2 + · · ·+ xn ≡3 0) ≤ 3n
• 2n ≤ C(x1 + x2 + · · ·+ xn ≥ 3) ≤ 3n

Thank you for your attention!
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